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Abstract

For two decades, invasion percolation (IP) has provided a simple model of ‘drainage’ where
a non-wetting 1uid is injected into a porous media saturated with a wetting 1uid, in the limit
where capillary forces dominate and viscous forces are negligible. IP produces a characteristic
#ngering with a fractal dimension close to that of ordinary critical percolation. Avalanches (also
called ‘bursts’ or ‘Haines jumps’) have been observed. In this paper, we focus on the practical
issues relating to the causes of the #ngering and of the low saturations of injected 1uid. We
show that the saturation and the average position of the injected 1uid exhibit standard fractal
scaling behavior. However, the fractional 1ow of the injected 1uid does not allow an average
analysis because of the noise arising from the avalanches, even for the million site systems
investigated in this paper. In studying the spatial distribution of these avalanches, we #nd a size
cuto6 depending upon the position of the avalanches; this is characteristic of the #nite size of
the system and signals that the systems have not achieved self-organized criticality. Furthermore,
we show that the average size of these avalanches, 〈sa〉, increases with their average distance,
〈x〉, from the outlet as 〈sa〉 ≈ 〈x〉1:1. As a result, larger avalanches will tend to occur at the end
of longer #ngers causing preferential growth of the long #ngers at the expense of the shorter
#ngers. c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The #ngering of the injected 1uid associated with immiscible, two-phase 1ow in
porous media is one of the major reasons why several important geologic recovery=
remediation processes are singularly ineGcient. In secondary oil recovery, the water
displaces much less than half of the oil in any given reservoir, because the water
‘#ngers’ into the oil-saturated reservoir. In CO2 sequestration, where greenhouse gases
are injected into water saturated porous media (sea 1oor, deep water table, etc.) for
purposes of storage, the percent of possible storage is limited by the #ngering of CO2

into reservoir so that only a small fraction of the reservoir is occupied by CO2. In re-
mediation of DNAPL or LNAPL spills, which have entered and contaminated the water
table, standard pump and treat remediation methods are extremely ineGcient because
the water used to 1ush the contaminant from the porous media does not mobilize the
pollutant and only removes that tiny percentage which will be dissolved in the water.
Because of our focus on the eGciency of these processes, it is important to understand
how the injected 1uid occupies the medium. Therefore, this study investigates the av-
erage position and saturation of the non-wetting, injected 1uid, when the reservoir is
saturated by a wetting 1uid.
For decades, it has been appreciated that these processes are least eGcient at low

injection rates, i.e., at small capillary numbers, Nc =(viscous forces)=(capillary forces),
where the capillary forces dominate [1]. In the extreme limit of in#nitesimal injection
rate, e6ectively zero capillary number, Wilkinson and others introduced a simple model
of immiscible, two-phase 1ow called invasion percolation (IP) [2,3]. In this model, the
non-wetting, injected 1uid only advances through the largest throat (the one with the
smallest capillary pressure) on the interface between the injected, non-wetting 1uid and
the wetting, defending 1uid.
This IP model has been widely studied since its introduction [2–8]. The injection

patterns have been shown to be self-similar fractals with a fractal dimension similar to
that from standard percolation processes; recent work suggests that they may be iden-
tical [2–8]. It has been argued that this simplest version, just described, is inadequate
in two dimensions, where a region of wetting 1uid can be ‘trapped’ if the non-wetting,
injected 1uid 1ows around the region of wetting 1uid, fully encircling it and, thereby
blocking its route to the outlet of the porous medium [3]. A number of these ‘trapped’
regions can be seen near the inlet of the pattern in Fig. 1.
In the limit of zero capillary number, viscous e6ects are zero, so that the pressures

are uniform throughout any one 1uid. Therefore, the pressure in the injected 1uid is
uniformly equal to the inlet pressure while the pressure in the wetting 1uid is uniformly
equal to the outlet pressure. The pressure drop at the interface (inlet pressure minus
outlet pressure) is just large enough to advance the non-wetting 1uid through the largest
allowed throat on the interface. Therefore, this pressure drop must always be positive
and the wetting 1uid cannot displace the non-wetting 1uid from an occupied pore-body.
Since the wetting 1uid cannot displace the non-wetting 1uid, a fully encircled region of
wetting 1uid is immobilized or trapped, in that the non-wetting 1uid is prevented from
advancing into this trapped region. (IP) with trapping (IPwt) modi#es the standard
IP rules to forbid any advance into a ‘trapped’ region. Recently, we have presented



Fig. 1. The injected 1uid occupation of a typical million site diamond lattice up to breakthrough.

results from a standard model of two-phase 1ow in porous media which shows that
the model reproduces saturations and 1ow patterns from IPwt in the limit of small
capillary number [9].
The 1ow in the IPwt exhibits phenomena, variously called ‘bursts’ or ‘Haines jumps’

or ‘avalanches’, where the advance of the interface occurs in a localized region. In
this region, capillary pressures are lower than anywhere else on the interface. These
avalanches were #rst studied in sandpile models of self-organized criticality (SOC)
[10,11]. These sandpile systems were found to self-organize to a critical point where
avalanches of all sizes occurred and where the size distribution of these avalanches
obeyed a power law. These avalanches were observed in IPwt [7]; and a scaling the-
ory was developed to describe the number distribution and self-correlation of these
avalanches [6].
Unfortunately, this understanding of the IPwt model does not fully explain issues of

practical interest, i.e., why the #ngering occurs and why the saturation of the injected
1uid is so small. To understand better these issues for immiscible injection at small
capillary number, we have studied IPwt in two dimensions on a number of realizations
of model systems with pore bodies at the sites of a diamond lattice connected by
throats of randomly chosen cross-sectional area; we have studied model systems with
a variety of sizes up to a size of 106 pore bodies (400 × 2500 and 1000 × 1000). A
typical pattern is shown in Fig. 1. In Section 2, we show that advance of the injected
1uid is described by the same fractal dimension describing patterns from standard
percolation theory. That is, the time dependence of the #rst moment of the injected 1uid
and its saturation are characterized by this fractal dimension. However, in Section 3,
when we look at the fractional 1ow pro#les (the position dependence of the 1ow of
the injected 1uid, i.e., the current associated with saturation), we do not observe the
expected regular advance of the injected 1uid through the medium. Instead, we observe



a very noisy interfacial advance associated with the local advance from ‘bursts’ or
‘Haines jumps’ or ‘avalanches’. In Section 4, we #nd that these avalanches have the
predicted size distribution and correlations. When we look at the spatial distribution of
these avalanches, in Section 5, we #nd convincing evidence that the avalanche size, sa
(i.e., the mass or volume of injected 1uid in the avalanche), increases with distance
x from the inlet and indeed that the avalanche size shows an almost linear growth
with distance from the inlet, 〈sa〉 ≈ 〈x〉1:1. If the size of these local avalanches are
increasing with x, i.e., with #nger length, the long #ngers grow at the expense of the
shorter #ngers; i.e., larger x means larger avalanches and a larger advance of the long
#ngers.

2. Average position—�rst moment of the injected �uid

In this section, we investigate the average distance from the inlet, 〈x〉, of the injected
1uid as a function of injected volume, V , equivalently mass, m, or ‘time’. For a constant
volume 1ow, q, the volume is directly proportional to the time, V = qt, as is the mass
of negligibly compressible 1uids. An additional advantage of determining the time
dependence of 〈x(t)〉 is its simple relationship to fractal dimension for fractal 1ows
like those from IPwt. Since the mass of a fractal, m, is related to the linear dimension,
〈x〉, m= A〈x〉Df−1, then 〈x(t)〉 is given by

〈x(t)〉= Bt1=(Df−1) = Bt1+�; t = (m=w) + 0:91 (1)

which de#nes the exponent, �. Fig. 2 shows data from a variety of IPwt simulations
from systems with di6erent sizes (from small diamond lattices of length 30 pore bodies
and widths from 90 to 270 with a few thousand pore bodies to lattices with one million
pore bodies 400× 2500). In our de#nition of ‘time’ (i) we use the mass (equivalently
the volume, both proportional to the physical time), which would enable us to compare
the fractal character from computer experiments with di6erent 1ow velocities; (ii) given
our uniform injection along the width of the diamond lattice, we divide the mass by the
width because time is una6ected by the width of di6erent model even though the mass
would be proportional to that width; (iii) the additive constant of 0.91 arises from the
discrete vs. continuous arguments of our earlier miscible 1ow work [12] (irrelevant at
larger times, it serves as a #tting constant to make the power law in Eq. (1) applicable
at smaller times) and; (iv) the exponent 1 + � = 1:123 represents the prediction using
the known value of the percolation dimension, Df = 1:89. This value of the fractal
dimension agrees with later work on IPwt although it is somewhat larger than that
found in other studies of IPwt, Df = 1:82 [4–8,13].
We have focused on ‘short, wide’ systems because experience has shown that 1ows

in long narrow systems (even in square systems) coarsen from many growing fractal
#ngers to one growing #nger [14]. This causes signi#cant deviations from fractal power
laws. The values of 〈x〉=t1:123 exhibit signi#cant noise even for our wide systems and
after averaging over as many as 20 di6erent realizations. It seems likely that randomly
positioned avalanches, to be discussed in Section 4, are responsible for this signi#cant
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Fig. 2. Fractal scaling of 〈x(t)〉 from IPwt on a variety of systems sizes averaging over a variety of numbers
of realizations (di6erent samples of our model system which di6er only in the random number seed used to
generate the throat widths).

amount of this noise. Even with the random noise, there are no consistent trends which
would make the slope of the data in Fig. 2 signi#cantly di6erent from zero.

3. Saturation pro�les for IPwt

We have performed IPwt simulations on #ve di6erent realizations of systems which
are 400 pore bodies in the direction of 1ow (the x direction) and 2500 pore bodies
wide (in the y direction). The following #gure shows the results of averaging the
saturation pro#le over #ve realizations. This saturation pro#le gives the fraction of the
porous medium occupied by the invading 1uid at a given value of x for four di6erent
times: when 4%, 6%, 10% and 12% of the porous medium is occupied by invading
1uid, respectively.
Since the #rst moment of these pro#les is exactly the 〈x〉 discussed in the previous

section, the time dependence of 〈x〉 makes de#nite predictions about the time depen-
dence of the saturation pro#les. If 〈x(t)〉 must obey Eq. (1), the saturation pro#le must
have the following ‘scaling’ form:

S(x; t) = t−��(x=t1+�) ; (2)
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where � is an undetermined function. Eq. (2) follows because of the following two
relations. First, the total saturation is equal to t (in this section, the fraction (or percent)
of the porous medium occupied by invading 1uid), i.e.,

t =
∫
S(x; t) dx =

∫
t−�&(x=t1+�) dx = t

∫
&(u) du ; (3)

where u is the variable u = x=t1+�, and the last integral is dimensionless. Secondly,
the #rst moment of the saturation pro#le is just the 〈x(t)〉 analyzed in the previous
sections, which must satisfy Eq. (1) for IP so that

〈x〉=
∫
xS(x; t) dx =

∫
xt−�&(x=t1+�) dx = t1+�

∫
u&(u) du : (4)

The scaling form in Eq. (2) is the only function which satis#es these relations for the
leading power of t in Eq. (1). (Note: the di6erence between the de#nitions of time in
this section and the previous one is purely multiplicative length of the system and has
no e6ect upon the power-law dependence in these equations.)
Therefore, we have a de#nite prediction (Eq. (2)) for the saturation pro#les. Fig. 4

tests this prediction for the data in the above #gure for the saturation pro#les.
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Since s(u) should equal t� S(x; t) and should be only a function of u= x=t1+�, the four
curves in Fig. 3 should collapse to the one curve de#ning the function �(u). To well
within the small error bars shown in Fig. 4, the data show striking agreement with the
prediction of Eq. (2).
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3.1. Fractional 5ow pro6les

Surprisingly, given the smooth behavior of the saturation pro#les, the fractional 1ow
pro#les are quite noisy. Figs. 5a, b show the fractional 1ow pro#les at the four times
t = 4%, 6%, 10% and 14% for two di6erent, but typical, realizations. In all cases,
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these fractional 1ow pro#les are characterized by ‘bursts’ (or ‘avalanches’ or ‘Haines
jumps’) where the interface advances rapidly and where the fractional 1ow changes
dramatically. Disconcertingly, these ‘bursts’ seem to occur at random locations without
any regular progression as the invading 1uid moves through the medium; also, there
are signi#cant di6erences between realizations (di6erent samples of our model system
which di6er only in the random number seed used to generate the throat widths).
Fig. 6a, b compares the fractional 1ow pro#les for t = 10 for #ve di6erent porous
media for the 180 × 1080 and the 400 × 2500 size systems, respectively; again, the
locations of the ‘bursts’ seem random, i.e., very sensitive to the di6erences between
the realizations.
Given the nature of the IP model, it is not surprising that the interfacial advance

occurs randomly throughout the porous medium, since the 1uid only advances into the
largest interfacial throat (with the smallest capillary pressure to overcome). Therefore,
at any one time step, the interface advances only through that largest interfacial throat,
and that largest throat may be anywhere on the interface. Actually, Figs. 5 and 6 should
be less noisy than the situation just described, because Figs. 5 and 6 include the inter-
facial advance not just during one time step but during a short time, dt, where 0.1% of
the porous medium has been invaded. That is, the fractional 1ow at t=10% re1ects the



change in saturation between t = 9:9% and 10%; e6ectively, we have averaged
the fractional 1ow over many time steps (approximately 200 for porous media of the
size under consideration). Still, the fractional 1ow pro#le is disconcertingly noisy, mak-
ing analysis of the average behavior diGcult if not meaningless. This time-averaged
fractional 1ow shows the ‘bursts’ which dominate the 1ow during this 0.1% time
interval.
It is easy to appreciate the randomness in the locations and ranges of these bursts if

we look at the rate of change of the saturation of injected 1uid instead of the fractional
1ow. Fig. 7 shows [dS(x; t)]=dt|t averaged over times from t-0.1 to t for t = 6%, 8%,
10%, 12% and 14%. In order to compare the burst locations at di6erent times, we have
plotted [dS(x; t)]=dt|t vs. the scaled position x=t1:123 for the #ve di6erent realizations.

Since this is the slope of the fractional 1ow pro#le, the large slopes in Fig. 6
(‘bursts’) show up as large values of [dS(x; t)]=dt|t . Notice the ‘bursts are randomly
distributed over the scaled distance; speci#cally, there are t = 6% ‘bursts’ (solid black
lines) over the full range of scaled distance, and t = 8% ‘bursts’ (dashed black lines)
over the full range of scaled distance; the t=10% ‘bursts’ (solid, dark gray lines) are
more clustered at small-to-mid-range scaled distance, consistent with Fig. 6b. Clearly,
the ‘bursts’ or avalanches occur randomly at all values of scaled distance.

4. Avalanche (‘burst’ or ‘Haines jump’) distributions

For more than a decade, it has been known that avalanches occur in IP and that
these avalanches obey scaling relations related to ordinary percolation theory [6,7,13].
The avalanches occur when a throat is invaded and then a series of throats connected
to this original seed throat are sequentially invaded; this occurs because the seed throat
is the inlet to a region in the lattice with comparatively small capillary pressures [6].
The mass-distribution of avalanches was predicted to be a power law function of size

N ˙ s�
′
a ; (5)

again sa is the size (mass) of an avalanche. The exponent value has been predicted to
be �′=1:527 [6]. For our #ve realizations of the 400×2500 IPwt, we have determined
the avalanches which occur after 1% of the porous medium has been invaded. Fig. 8
shows the number, N¿ 1, of avalanches of each possible mass from one up to the
largest size. Not surprisingly, there is signi#cant noise in the small numbers of the
largest masses.
The dashed line in Fig. 8 shows the predicted power law, Eq. (5). Clearly, this

data is consistent with a slightly smaller value of the exponent; best #ts are consistent
with an exponent �′ = 1:37 (shown by the solid line). As will be discussed in a
following section, we believe that this ‘depinning’ system [13] has not achieved the
self-organized critical point, after just 1% invasion, so that Fig. 8 does not show
the asymptotic scaling behavior. As expected, including only later avalanches gives a
somewhat improved value of the exponent.
The correlations between invaded sites show the expected scaling behavior, with ex-

ponents which, again, may not be asymptotic [6]. These correlations, N (r; T ), describe
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the space–time correlation of any invaded site (the ‘initial’ site) to subsequently in-
vaded sites. Speci#cally, N (r; T ) is the number of sites invaded, which are a distance
r ± 0:5 from the ‘initial’ site, and which are invaded T time steps after the ‘initial’
site was. These correlations are shown in Fig. 9 for several times. These correlations
were observed [7] to scale as

N (r; t) = f(rD=t)=r ; (6)
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where the scaling function had power-law asymptotic behavior

f(u) ≈ ua for u�1 and f(u) ≈ u−b for u�1 : (7)

Having used a value of fractal dimension, D = 1:82, the exponent values in Eq. (7)
were observed to have the values a ≈ 1:4 and b ≈ 0:6 [7]. Scaling arguments for
these exponents predict b = 0:527 and a = 1:0 [6]. Using the fractal dimension from
percolation theory, D = 1:89 [15], we #nd a satisfactory scaling collapse of the data
in Fig. 9 to one universal curve, shown in Fig. 10. The value of both exponents
from the data in Fig. 10 are about 10% larger than the earlier estimates [7]. Since,
as will be argued, our systems are not at the asymptotic self-organized critical point,
it seems likely that we should not expect correct asymptotic critical values of these
exponents.
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5. Spatial distribution of the avalanches

In studying results from our one million site IPwt model, we have characterized
those avalanches that occurred between 1% of the occupation of the medium and
breakthrough. We found results consistent with earlier work for the space–time cor-
relation. However, there were small discrepancies between the best exponent values
from our results and the previously determined exponents. Also, although the presence
of avalanches explains the noise in our fractional 1ow pro#les (Figs. 5 and 6), the
#ngering and the related small values of saturation of the injected 1uid are not ex-
plained simply by the existence of avalanches. In this section, we will show (i) that
our systems have not achieved a self-organized critical point, so that our values of
the exponents should di6er slightly from the asymptotic values, and (ii) that the size
of the average avalanche increases with distance from the inlet. Therefore, it is more
likely that large avalanches will occur at the ends of long #ngers than at the ends of
short #ngers resulting in preferential growth of the longer #ngers.



0 100 200 300 400 500 600
0

50

100

150

200

250

300

350

400

j
j 4780
j 4992
j 5040
j 5110
j 5249
j 5277
j 5306
j 5353

y = j

flow 
direction

x 
=

 i

Fig. 11. The avalanche structure of the breakthrough #nger for one of the realizations of our 400×2500 IPwt
systems. Note the lightest gray is for the #nal ‘breakthrough’ avalanche (the 5353rd avalanche). The black
squares are for all of the smallest avalanches; although a few of these smallest avalanches occur around
i = 150, most of the smallest avalanches occur for i ¡ 100.

As a precursor to studying the spatial avalanche structure of the #ngers, Fig. 11
shows the avalanche structure of a typical breakthrough #nger (reaching the outlet at
x=i=401). The di6erent gray scale areas represent di6erent avalanches (with sequential
avalanche labels 4780, 4992, 5440; : : : ; 5353). All of the very smallest avalanches are
labeled by dark squares.
It is striking that the largest avalanche is the breakthrough avalanche. To demonstrate

that it is not unusual for the largest avalanches to occur farthest from the inlet, Fig. 12
shows the avalanche size vs. imax, the location of the that point in the avalanche which is
furthest from the inlet (therefore breakthrough avalanches should occur at imax = 401).
It is clear that the majority of small avalanches occur near the inlet, and that the
range of avalanche sizes increases with imax. There is a de#nite cuto6, Massmax(imax),
for this data, i.e., no avalanche sizes greater than this cuto6, Massmax(imax), occur
for a given imax. The cuto6 shows that at a given imax (say imax = 100) there are
no avalanches greater than Massmax(imax) (Massmax(imax = 100) ≈ 2500). It is well
known that at a self-organized critical point, one has avalanches of all sizes obeying a
power-law distribution; this cuto6 demonstrates that the system is not yet critical so that
any exponents determined from this data will only approximate their true asymptotic
values.
These results also suggest that the average avalanche size will increase as x increases

(as the self-organized critical point is approached). To investigate this possibility, we



Fig. 12. For the nine realizations of our million site IPwt model, the size of each avalanche is plotted vs.
the maximum distance from the inlet reached by that avalanche. Notice, of the nine breakthrough avalanches
(for which imax = 401) four of them are among the seven largest avalanches.

determined the position of the center of mass of each avalanche. After binning the x
component of the center of mass (e.g. for bins of size 1, individual bins span the range
of values x = 1–2, 2–3, 3–4, etc.) we determined the average size of the avalanches
in each of these bins. Fig. 13 shows the average avalanche size vs. bin location. Not
surprisingly, there is signi#cant noise for the bins with largest x since these have the
smallest numbers of avalanches. Clearly, the average avalanche size increases with the
average distance from the inlet. The power law

〈sa〉 ≈ 〈x〉1:1 (8)

is a credible #t to the data up to 〈x〉= 100 where the noise is too large for a reliable
#t. However, a linear increase of avalanche size with distance is allowed by gener-
ous uncertainties in the exponent. In any case, the average avalanche size increases
signi#cantly with distance from the inlet.
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Fig. 13. Average size of the avalanches vs. their average distance from the inlet. The avalanche data has
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(actually the 〈x〉 of the horizontal axis is the location of the center of the bin). The solid line shows the
best power law #t in Eq. (8); the dashed line shows the linear power law.

6. Conclusions

Invasion Percolation was introduced 20 years ago to describe two-phase 1ow in
porous media in the limit where capillary e6ects dominate and viscous e6ects are
negligible (zero capillary number) [2,3]. Over the past 20 years, the model was the
subject of a number of investigations, but practical issues relating to the causes of low
injected 1uid saturation and #ngering have not received concentrated attention [4–8]. In
this paper, we have focused on these issues. In Section 2, we showed that the average
position of the injected 1uid has the standard fractal-scaling behavior, consistent with
the fractal dimension of ordinary critical percolation [15]. Pro#les of the invading 1uid
saturation were shown to scale with the fractal dimension, in Section 3. Earlier work
on IP demonstrated the existence of avalanches (or ‘bursts’ or ‘Haines jumps’) which
likely contributed to the random noise in the average position of the injected 1uid,
Fig. 2. Unfortunately, the random spatial and temporal occurrence of these avalanches
made an average analysis of the fractional 1ow intractable. The fractional 1ow pro#les



showed both signi#cant di6erences between di6erent realizations (e.g. Figs. 6a and b)
and an irregular time evolution as the interface advanced through the medium (e.g.
Figs. 5a and b); these irregularities even occurred in our million site systems where
the pro#les were averaged over the 2500 pore body width. In Section 4, it was shown
that the spatial and time dependence of the correlations between invaded sites obeys
the predicted scaling behavior, with exponents which di6er by as much as 10% from
previous work [6,7]. In Section 5, we show that these #nite size systems are not yet
at the self-organized critical point, so that the e6ective exponents determined in the
previous section should not be expected to have their asymptotic critical values. These
#nite systems are not critical because avalanches which reach any #nite value of x
have a de#nite cut-o6, Fig. 12, so that at #nite x, the system does not have the critical
power-law distribution with all sizes of avalanches [10,11]. In this section, it is also
demonstrated that the average size of an avalanche increases with the distance of its
center of mass from the inlet. Therefore, the size of a typical avalanche increases with
its distance from the inlet. This favors preferential growth of long #ngers over shorter
#ngers because the avalanches occurring at the end of long #ngers will tend to be
larger advancing the long #nger more. We plan to perform larger simulations so that
we can determine more reliable estimates of the critical indices.
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